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Abstract. The paper presents the results of research on the develop-
ment of a framework and new tools for perceptually oriented visualization
of human motion, in particular, a gait. Presented in this paper are new
tools for visualizing motion and gait of a human. Their implementation
is based on the following principles: i) translational motion component
is omitted and time-varying orientations of individual parts of the body
are represented by the trajectories of quaternions, ii) the trajectories of
quaternions are visualized using a maps: S3 → R3 implemented as: or-
thogonal projection, stereographic projection, Hopf transformation. This
paper describes only the basic functionalities of the tool, the rest are easy
to elicit from the main application screen. Rotations of a rigid body rep-
resented by the "3D one" about an axis de�ned by selected vector are
presented as an example of using the tool and to facilitate understanding
of motion visualization. Finally the exemplary gait visualisations based
on three di�erent maps for healthy subjects and patients with impaired
movement are presented. Trial carried out using data from the gait labo-
ratory HML show that the best approach to qualitative and quantitative
analysis is based on using orthogonal projection. Other types of maps
like Hopf and stereographic are di�cult to interpret and may be useful
in more speci�c cases.

1 Introduction

In the case of human motion, there are two types of models of human body: i)
the skeleton and ii) skeleton-less. The skeleton model is represented by a sys-
tem of articulated rigid bodies The skeleton-less model is represented by a set
of distinguished points and its motion through time. In the rest of this work a
skeleton model is used. Each of the rigid bodies of skeleton model is parame-
terized by the mass and inertia tensor and corresponds to the anatomical body
segments like shoulder, arm, foot, hand. Similarly, the number of degrees of free-
dom for body part connection is equal to the number of degrees of freedom of
the respective anatomy joint. In standard models, the number of rigid bodies
depends on the assumed model resolution, 22 for Vicon Blade model and 24
for Vicon Nexus model. Specialized models for certain parts of human body do



represent those parts with higher resolution, good example of those is clinically
tested Oxford Foot Model which uses 3 ridig bodies for foot and 1 for tibia [1].
Con�guration of articulated rigid bodies can be described alternatively by: i)
de�nition of position (translation and orientation) of the frame of each body
w.r.t. the frame of the world or alternatively w.r.t. the frame of this body in the
selected initial con�guration (e.g. T pose), ii) de�nition of the hierarchy tree of
bodies and the de�nition of orientation of the frame body of child w.r.t. cur-
rent frame. Translation for the frame of child to parent frame is constant due
to the assumption of rigidity of bodies. Translation and orientation of the body
which is the root of a tree is determined w.r.t. the frame of the world. Regard-
less of convention of con�guration description the key element of visualization
is to visualize change in time orientations of individual rigid bodies forming the
skeleton. From a formal point of view, the orientation of a rigid body can be
parameterized alternatively and equivalently by: i) a 3× 3 skew-symmetric ma-
trix, via exponentiation; the 3× 3 skew-symmetric matrices are the Lie algebra
of SO(3), and this is the exponential map readily applicable in Lie theory, ii)
Euler angles (θ, ϕ, ψ), representing a product of rotations about the z, y and z
axes, iii) Tait-Bryan angles (θ, ϕ, ψ), representing a product of rotations about
the x, y and z axes, iv) axis angle pair (n, θ) of a unit vector representing an
axis, and an angle of rotation about it, v) a quaternion q of length 1; the com-
ponents of which are also called Euler-Rodrigues parameters. The aim of the
current work [16,17,18,19,20,21] was to test a wide variety of parameterizations
for usability in problems of human motion analysis and classi�cation, including
their sensitivity to some of the characteristics features of motion. In this paper
quaternion parameterization of orientation was assumed and the goal was to im-
plement and test various techniques of quaternion trajectory visualization and
perceptual diagnosis of abnormalities of movement. Tested quaternion visualiza-
tion techniques uses alternatively: i) orthogonal projection of S3 parallel to the
real axis ii) stereographic projection and iii) Hopf map. The developed new tools
require experience in the interpretation of the observed trajectory obtained as a
result of mapping S3 → R3. For this reason, a separate component of the tool is
developed that allows to simulate the trajectory of elementary rotation and to
show their visualization.

The literature on visualizing quaternions and more generally quaternions
trajectories and �elds is extensive, the basic positions are [4] and [5]. Despite of
this, diversity and utility of tools implemented on the basis of theoretical con-
cepts of visualization are rather restricted in terms of their funcionalities and
perceptual values o�ered. Most of these like Meshview [6], Quaternion Rotation

Demo [7], Quaternion - Maps are authored by A. J. Hanson and serve rather for
demonstration than for practical use. Another program of Hanson Quaternion

Demonstrator, [8], allows the visualization of quaternions maps. J.C. Hart pro-
gram, [9], [10], allows the visualization of one quaternion simultaneously. There
exist also Quaternion visualization tool in Matlab environment, [12]. Regardless
of the critical evaluation of existing programs visualizing quaternions and quater-



nions trajectories many of theoretical and graphical ideas included in them were
used to create new tools presented in this work.

2 Motion Data Acquisition

Gait data used to test the proposed approach and implemented tools have been
obtained in the multimodal laboratory-Human Motion Laboratory (HML) of
Polish-Japanese Institute of Information Technology
http://www.hml.pjwstk.edu.pl A huge database contains the records of gait mo-
tion obtained from healthy patients with coxartroza and movements of people
with Parkinson's disease. HML measurements equipment are: 1) Vicon's Motion
Kinematics Acquisition and Analysis System equipped with 10 NIR cameras with
the acquisition speed of 100 to 2000 frames per second at full frame resolution
of 4 megapixels and 8-bit grayscale and acquisition space of 12x7x4 meters. 2)
Noraxon's Dynamic Electromyography (EMG) System allowing for 16-channel
measurement of muscle potentials with non-gel electrodes in compliance with the
SENIAM guidelines. 3) Kistler's Ground Reaction Force (GRF) Measurement
System used for measuring ground reaction forces with two dynamometric plat-
forms with measurement ranges adjusted to gait analysis research. The system
has a 6-meter path masking two platforms situated in the middle of its length. 4)
A system for simultaneous multi-camera video image recording equipped with
4 Basler's cameras that allows for simultaneous image recording from all the
cameras in Full HD and lossless video recording. The system uses color video
recorders using the GigE Vision standard and industrial lenses. The multimodal
motion data available in C3D, AMC/ASF, BVH formats.

3 Theoretical Issues

3.1 Quaternions

Lets de�ne three distinguished coordinate vectors (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1)
named i, j and k, respectively. The vector (w, x, y, z) written as q = w + xi +
yj + zk represents quaternion in algebraic notation. The number w is the real
part and x, y and z are called the i, j and k parts, respectively. Beside alge-
braic notation we use trygonometric q = ‖q‖(cos θ2 + n sin θ

2 ) and exponential
q = ‖q‖ exp(nθ), n = 0 + n1i + n2j + n3k where n = (n1, n2, n3) de�nes axis
of rotation and θ angle of rotation. Detailed information concerning quaternions
can be found in [2,3,11]

The set of unit length quaternions, viewed as points in R4, is the 3D-sphere
S3. Each nonzero quaternion q has a multiplicative inverse, denoted as q−1 and
conjugate denoted as q.

The set S3 with the operation of quaternion multiplication satis�es the ax-
ioms of a group. The set of rotations in 3-space, with the operation of composi-
tion, is also a group, called SO(3). Each rotation R in SO(3) can be realized by
quaternion q,−q ∈ S3



3.2 Orthogonal Projection

Orthogonal projection S3 → R3 is a basic tool for quaternion trajectory visual-
isation. Lets represent quaternion as:

q = (w, x, y, z) = (w,v) (1)

where:
(w)2 + (x)2 + (y)2 + (z)2 = 1 (2)

Depending on value of w, the set of vectors v can be divided into following
subsets; if w > 0: north hemisphere, if w < 0: south hemisphere and if w = 0:
equator. Each point of S3 sphere is projected to a point (x, y, z) in a ball with
radius of 1. Value of w can be deduced from v and subset.

(w) = ±
√
1− v · v (3)

(a) Ball
North hemisphere
x2 + y2 + z2 < 1
0 < w ≤ 1

(b) Sphere
Equator
x2 + y2 + z2 = 1
w = 0

(c) Ball
South hemisphere
x2 + y2 + z2 < 1
−1 ≤ w < 0

Quaternions have a property of double-covering orientation space. Joints in
human body; however, have a limited range of rotations. Therefore, for purpose of
visualition, all quaternions from southern hemisphere are re�ected onto northern.

qvis =

{
q w ≥ 0

−q w < 0
(4)

Relation between angle of rotation θ and distance from center of ball t is
non-linear and can be described as:

t ∈< 0; 1 > (5a)

θ = 2arcsin t (5b)

In order to linearize and make visualization more intuitive, following trans-
formation is applied:

qvis = (w,x, y, z) =
(
cos

θ

2
,n sin

θ

2

)
(6a)

P = n̂
2 arccos(w)

Π
(6b)



where P is transformed position of qvis in visualization space and n̂ is nor-
malized n vector.

By applying above formula relation between angle and the distance of P from
the centre of R3 becomes linear. This distance is equal to distance on S3 from
qvis to the north pole divided by Π.

3.3 Stereographic Projection

Stereographic projection S3/(1, 0, 0, 0) → R3 considered in this paper as alter-
native tool for quaternion trajectory visualisation is de�ned as follows:

(w, x, y, z)→ (
x

1− w
,

y

1− w
,

z

1− w
) (7)

3.4 Hopf Fibration

The Hopf �bration, named after Heinz Hopf, is a useful tool in mathematics and
physics and has many physical applications such as quantum information theory
[13], magnetic monopoles [14] and rigid body mechanics [15]. In context of this
paper a key issue is connection of the Hopf �bration with rotations of 3D-space.
Let S3 and S2 be spheres in R4 and R3 respectively The Hopf �bration is the
mapping h from S3 to S2 de�ned as follows:

h(w, x, y, z) = (w2 + x2 − y2 − z2, 2(wz + xy), 2(xz − wy)), (8)

under assumption that q = (w, (x, y, z)) is quaternion in vector notation.
It can be easily veri�ed that the squares of the three coordinates on the right

hand side of (8) sum to 1, so that the image of h is a subset (indeed the whole)
of S2.

Hopf �bration map can be also de�ned in terms of rotation by quaternions.
Let P0 = (1; 0; 0), be a distinguished point on S2. Let for any given point
(w, x, y, z) on S3, q = w + xi + yj + zk be the corresponding unit quaternion.
The quaternion q de�nes a rotation Rq of 3-space. Then the Hopf �bration is
de�ned by:

q → Rq(P0) = qiq (9)

Consider once again the point P0 = (1, 0, 0) in S2. One can easily check that the
set of points C = (cost, sint, 0, 0), t ∈ R or in other representation; a rotation
about axis de�ned by vector (1, 0, 0), map to (1; 0; 0) via the Hopf �bration
h. In this case set C is the entire set of points that map to (1, 0, 0) via h. In
other words, C is the preimage set h−1(1, 0, 0). The set C is the unit circle in
a plane in R4. In general for any point P in S2, the preimage set h−1(P ) is a
circle in S3 which is called the �ber of the Hopf map for P. Let us note that
the converse statement is not true. For example the circles in S3 de�ned as
C = (cost, 0, sint, 0), C = (cost, 0, 0, sint) and representing rotations about axis
de�ned by vectors (0, 1, 0),(0, 0, 1) are mapped to circles in R2.



4 General Tool Description

Tool developed for quaternion visualization was implemented using .NET frame-
work and is based on Windows Forms technology. There are two distinct applica-
tions of which each presents di�erent frontend, however both utilize same imple-
mentation of all transformations to achieve its goals of visualizing quaternions
that can be selected using GUI. Visualizations are shown in separate panels,
each providing controls for speci�c visualization. All visualizations can be saved
to PNG �le at any given time using current orientations of coordinate systems
selected in each visualization panel.

Fig. 1: Main screen of QuaternionVisualization application

First application, QuaternionVisualization has ability to load skeleton-based
animation �les containing information about rotation of each segment of human
body around its parent joint de�ned by skeleton. Additional data, like time
markers related to speci�c events (e.g. beginning and end of each step) can also
be loaded from C3D �les. In each frame there is a visualization of quaternion in
time using techniques mentioned. Data from animation �le can be clipped using
arbitrary values for point in time in which to begin and end visualization, or it
can be selected from events provided by loaded C3D �les. Two di�erent segments
can be selected at once in order to compare them on separate or combined screen.



(a) Axis of rotation 1,0,0 (b) Axis of rotation 0,1,0 (c) Axis of rotation 1,1,1

(d) Orthogonal projection of
rotation around 1,0,0, which
overlaps red axis

(e) Orthogonal projection of
rotation around 0,1,0, which
overlaps green axis

(f) Orthogonal projection of
rotation around 1,1,1

(g) Stereographic projection
of rotation around 1,0,0

(h) Stereographic projection
of rotation around 0,1,0

(i) Stereographic projection
of rotation around 1,1,1

(j) Hopf �bration of rotation
around 1,0,0

(k) Hopf �bration of rota-
tion around 0,1,0

(l) Hopf �bration of rotation
around 1,1,1

Fig. 2: Sample visualizations using QuaternionVisualizationLearning application

Second application, QuaternionVisualizationLearning, exists to prove correct-
ness of implementation and to show how each type of visualization works for
typical data. User can select axis of rotation and an angle and create a list of
such rotations that will be visualized together as one path. User can also cus-
tomize visualization to suit his needs by selecting visualization style, visibility
of objects, thickness of lines, etc. User can select speci�c quaternion using slider
to see which part of visualization is based on selected quaternion. A shape of 1
is used to show orientation and rotation axis of provided data.



Fig. 3: Main screen of QuaternionVisualizationLearning application

5 Exemplary results

(a) Healthy patient - orthogonal
projection

(b) Sick patient - orthogonal pro-
jection

(c) Healthy patient - stereographic
projection

(d) Sick patient - stereographic pro-
jection

(e) Healthy patient - Hopf �bration (f) Sick patient - Hopf �bration

Fig. 4: Exemplary results collected from healthy and sick patients



6 Conclusions and Further Works

Visualizations underlying the following comparison and summary refer to the
case of hierarchical representation of pose as a ordered set of child body - parent
body rotations. Other cases discussed in the �rst chapter are also acceptable and
supported by the software, but their interpretation is more di�cult because of
the possible change of orientation of the entire skeleton. Visualizations are made
based on the following three di�erent techniques of mapping S3 sphere onto
R3: i) the orthogonal projection which maps the northern hypersphere of S3

sphere on the B3 ball, ii) the stereographic projection which maps the northern
hypersphere of S3 sphere to R3, and �nally iii) Hopf map S3 to S2. Orthogonal
projection is easiest to perceive because in this case the quaternion encoding
rotation is visualized by the vector de�ned rotation axis. The length of this
vector is scaled linearly or non-linearly by the size of the angle of rotation. Such
visualization is perceptually clear in the case of the regular gait in which the
axes of rotation of each rigid body is approximately constant. The variability of
the axes may be an important prerequisite for diagnostic reason. For example,
in the case of the knee, due to the anatomical structure of this joint axis of
rotation performs precession. The shape and size of the surface generated by
the vector of rotation axis in some cases approximated by a cone of precession
are important for diagnosis. The disadvantage of visualization techniques based
on the orthogonal projection is the di�culty in visualizing the time. In the
developed software time is visualized by color of the trajectory point, plus a
separate time line. The di�culty of visualizing time causes di�culties in reading,
even qualitative, angular velocity. Although there is a possibility of visualizing
the points of trajectory by markers or numbers, experiments performed have
shown that this leads to decreasing perceptual quality of visualization. As seen in
�g. 4, one could assess health and sick patient's movement based on shakiness of
trajectory. Interpretation of the stereographic projection is based on knowledge
of the images of selected arcs on the sphere S3. Of particular interest is the
visualization based on the Hopf map. As shown in section 2 rotation with respect
to the axis de�ned by the vector (1,0,0) maps to a point (1,0,0). Consequently, the
"scatter" around the point (1,0,0) on the sphere S2 may be a measure how much
the actual rotation about actual axis is di�erent from the ideal rotation with
respect to axis de�ned by vector (1,0,0). Still though, analysis of the utility of
visualization based on Hopf map technology requires further research. Therefore,
one objective of the work is wide dissemination of software in order to obtain
opinions of its usefulness.
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