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Abstract. The authors describe an example of application of nonlinear time series analysis directed at identifying the presence
of deterministic chaos in human motion data by means of the largest Lyapunov exponent. The method was previously verified
on the basis of a time series constructed from the numerical solutions of both the Lorenz and the Rössler nonlinear dynamical
systems.
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INTRODUCTION

Dynamics properties of a system can be determined on the basis of its model (provided that it is known) consisting of
differential or difference equations or through analysis of experimental data collected as result of system observation.

The state of a dynamical system at a given instant of time can be represented by a point in the phase space spanned by
the state variables of the system. Many nonlinear or infinite-dimensional dynamical systems exhibit chaotic behavior.
The presence of deterministic chaos is characterized by extreme sensitivity to initial conditions. This hallmark means
that initially nearby points can evolve quickly into very different states. In case of analysis of experimental data,
fundamental components of the process of determining existence of chaos in a signal represented by a time series
are phase space reconstruction and subsequent estimation of the Lyapunov exponents which quantify the average
exponential rate of divergence of initially nearby phase space trajectories [1]. Thus, a positive value of the largest
Lyapunov exponent (LLE) implies chaotic behavior.

Chaoticity was observed in a variety of systems from severalareas including, among others, meteorology, physics,
engineering, economics and biology. From among biomedicalsignals EEG, ECG and gait kinematic data are worthy
to note.

The chaotic characteristics of the ECG signals (Lyapunov exponents spectrum and correlation dimension) were
incorporated to the set of features for the purpose of biometric individual identification [2] but, first of all, chaos
theory has been applied to the analysis of electrocardiogram for examination of cardiac disorders [3].

Chaos is also present in epileptic EEG signals. Brain activity during seizure differs greatly from that of normal state
which can be observed as a decrease in chaoticity in the minutes before the seizure. Thus, analysis of the changes of
the LLE allows for the detection and prediction of the incoming epileptic seizure [4], [5].

In [6], [7] LLE was estimated to quantify the local dynamic stability (LDS) of human walking kinematics, that is to
say, the degree of resilience of gait control to small perturbations [8].

The research described in the present abstract aimed at verification of the complex procedure of computing the LLE
on the basis of a time series constructed from the numerical solution for well-known nonlinear dynamical systems
(Lorenz, Rössler [9]) with a view to its subsequent application for the purpose of identification of deterministic chaos
in gait kinematic data for patients suffering from various diseases affecting way of walking.

METHOD OF THE TIME SERIES ANALYSIS

Nonlinear time series analysis methods enable the determination of characteristic invariants such as the LLE of
a particular system solely by analyzing the time course of one of its variables [10]. Nevertheless, identification



of chaotic behavior based on experimental data is a multistage process. The first step constitutes a phase space
reconstruction. On the basis of Takens’ embedding theorem [11] the phase space can be reconstructed using time-
delayed measurements of a single observed signal in form of atime series. Reconstruction consists in viewing a time
seriesxk = x(kτs),k= 1, . . . ,N in a Euclidean spaceRm, wherem is the embedding dimension andτs is the sampling
time [12]. Eachm-dimensional embedding vector is formed asxk = [xk,xk+τ ,xk+2τ , . . . ,xk+(m−1)τ ]

T , whereτ is the
delay time. The selection ofτ andm is important for the sake of reconstruction quality. It is worthwhile to mention
that the properties associated with the system’s dynamics (inter alia Lyapunov exponents) are preserved in the new
phase space.

Time delayτ was calculated from the first local minimum of the mutual information function (MI). Mutual
information betweenxt andxt+τ is a measure of how much information can be predicted about one time series point
given full information about the other [1]. Assuming that the range of values in a time series was partitioned intoj
intervals of equal length, the mutual information functionI(τ) can be computed according to the following formula:

I(τ) =
j

∑
h=1

j

∑
k=1

Ph,k(τ) log2

(

Ph,k(τ)
PhPk

)

(1)

whereh andk are indices of intervals,Ph, Pk denote the probabilities thatxt assumes a value within theh-th, k-th
interval, respectively, andPh,k(τ) is the joint probability thatxt belongs to theh-th interval andxt+τ is taken from the
k-th interval.

The minimalm that is required to fully resolve the structure of the systemin the reconstructed phase space was found
by the method of “False Nearest Neighbors” (FNN) [13], whichis based on the following assumption constituting the
condition of no self-intersections – if the attractor (i.e.a set of states towards which neighboring states asymptotically
approach in the course of dynamic evolution [14]) is to be reconstructed successfully inRm, then all points that are
close inRm should also be sufficiently close inRm+1 [12]. A point which does not satisfy this condition is a “false”
neighbor. The number of such points is computed for increasing embedding dimension until the percentage of “false”
neighbors is below a given threshold.

The mean divergence between neighboring trajectories in the phase space at timet is described by the following
formula:

d(t) = Deλ1t (2)

whereD is the initial separation between neighboring points andλ1 is the LLE [6]. The Rosenstein algorithm
[15] estimates the LLE locating nearest neighbors on adjacent trajectories and computing the divergence between
successive pairs along the trajectories. On the basis of theformula (2) the Euclidean distanced j(i) between thej-th
pair of nearest neighbors afteri time steps of the length equal to∆t and the LLE are linked in the following way:

ln [d j(i)]≈ λ1 (i ·∆t)+ ln [D j ] (3)

Hence, the LLE is estimated as the slope of the average logarithmic divergence of the neighboring trajectories:

y(i) =
1
∆t

〈

ln [d j(i)]
〉

(4)

where〈·〉 denotes the average over all values ofj.

NUMERICAL EXPERIMENTS

In the first stage of the research, for both the Lorenz and the Rössler systems a time series was constructed from the
numerical solution for the single state variable sampled from t0 = 0 to tmax= 100 at intervals∆t = 0.01. Parameters
of the model (i.e. coefficients of the first-order system of state equations), initial conditions of the state variables,
parameters of the phase space reconstruction and computed LLE values (the “LLE (Rosenstein)” column) were
collected in Table 1. The results are consistent with LLE values obtained by means of the Wolf algorithm [16] using
the Jacobian matrix constructed on the basis of state equations (the “LLE (Wolf)” column).

The next stage of the research consisted in analysis of gait sequences which were recorded in the Human Motion
Laboratory (HML) of the Polish-Japanese Institute of Information Technology [17] by means of the Vicon Motion
Kinematics Acquisition and Analysis System. The Vicon system is equipped with 10 NIR (Near InfraRed) cameras



TABLE 1. Description of the experiments with dynamical systems

System Model
parameters

Initial
conditions

Time
delay τ

Embedding
dimension m

LLE
(Rosenstein)

LLE
(Wolf)

Lorenz σ = 10 ρ = 28 β = 8/3 x0 = 1 y0 = z0 = 0 17 3 0.7654 0.7164
Lorenz σ = 16 ρ = 45.92 β = 4 x0 = 1 y0 = z0 = 0 11 3 1.4670 1.4118
Rössler a= b= 0.2 c= 5.7 x0 = 1 y0 = z0 = 0 128 3 0.0757 0.0749
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FIGURE 1. Stages of the LLE computation: a) analysed signals, b) mutual information, c) percentage of false nearest neighbors,
d) reconstructed attractor, e) logarithmic divergence

recording the movement of an actor wearing a special suit with attached markers (themotion captureprocess).
Positions of the markers in consecutive time instants constitute basis for reconstruction of their 3D coordinates. The
gait route was specified as a 5 meters long straight line (use of a treadmill is planned for future recordings).

The experiment described in the present abstract was aimed at investigating chaotic behavior in tremor-affected
movements of both wrists of a patient suffering from Parkinson’s disease (PD). A single analysed time series repre-
sented one of the following types of wrist movement at the joint: up and down –extension/flexion(Ext/Fl), sidewards –
ulnar/radial deviation(Ul/Rad), and rotation –pronation/supination(Pr/Sup) [18]. Fig. 1 illustrates results of succes-
sive stages of the LLE computation for the right wrist: a) analysed signals, b) mutual information, c) percentage of false
nearest neighbors, d) reconstructed attractor, e) divergence. Subfigures b)-e) were created for the case of ulnar/radial
deviation.

Table 2 includes the LLE values for all types of wrist movement for the patient suffering from PD as well as for a
healthy person.

In contrast to the results for the healthy person, all types of wrist movement for the patient suffering from PD are
characterized by the positive LLE values which indicate thepresence of deterministic chaos. The noticeable difference
in the LLE values between both wrists of the PD patient confirmed conclusions drawn from visual observation of him.
All computations were performed using MATLAB.

TABLE 2. The largest Lyapunov exponents for both examined persons

Type of
movement

Left wrist
(PD)

Right wrist
(PD)

Left wrist
(Healthy)

Right wrist
(Healthy)

Ext/Fl 0.1233 1.0460 -1.0136 -0.1383
Ul/Rad 0.0750 2.2593 -0.0782 -0.1645
Pr/Sup 0.1544 0.4440 -0.0856 -0.0743



CONCLUSION

The authors described an example of identification of the presence of chaotic behavior in human motion data based on
phase space reconstruction and estimation of the LLE. The applied procedure of a time series analysis will be extended
by incorporation of other measures, such as correlation dimension and approximate entropy, in the hope that it will
constitute support for assessment of gait disorders (amongothers resulting from PD, stroke, osteoarthritis of the hipor
osteoarthritis of the spine).
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