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Abstract. The authors describe an example of application of nonlinear time seebserdirected at identifying the presence
of deterministic chaos in human motion data by means of the largest Lgaguponent. The method was previously verified
on the basis of a time series constructed from the numerical solutionstoti@lorenz and the Réssler nonlinear dynamical
systems.
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INTRODUCTION

Dynamics properties of a system can be determined on the b&iss model (provided that it is known) consisting of
differential or difference equations or through analygiexperimental data collected as result of system observati

The state of a dynamical system at a given instant of time eaafresented by a point in the phase space spanned by
the state variables of the system. Many nonlinear or infiditbeensional dynamical systems exhibit chaotic behavior.
The presence of deterministic chaos is characterized bgragtsensitivity to initial conditions. This hallmark mean
that initially nearby points can evolve quickly into veryffdrent states. In case of analysis of experimental data,
fundamental components of the process of determiningesdst of chaos in a signal represented by a time series
are phase space reconstruction and subsequent estimétioa byapunov exponents which quantify the average
exponential rate of divergence of initially nearby phasacsptrajectories [1]. Thus, a positive value of the largest
Lyapunov exponent (LLE) implies chaotic behavior.

Chaoticity was observed in a variety of systems from sewaeas including, among others, meteorology, physics,
engineering, economics and biology. From among biomedigalls EEG, ECG and gait kinematic data are worthy
to note.

The chaotic characteristics of the ECG signals (Lyapungoegnts spectrum and correlation dimension) were
incorporated to the set of features for the purpose of biomatdividual identification [2] but, first of all, chaos
theory has been applied to the analysis of electrocardiodoaexamination of cardiac disorders [3].

Chaos is also present in epileptic EEG signals. Brain agtiltiring seizure differs greatly from that of normal state
which can be observed as a decrease in chaoticity in the esifigtfore the seizure. Thus, analysis of the changes of
the LLE allows for the detection and prediction of the incogepileptic seizure [4], [5].

In [6], [7] LLE was estimated to quantify the local dynamialsility (LDS) of human walking kinematics, that is to
say, the degree of resilience of gait control to small péestions [8].

The research described in the present abstract aimed fitatoin of the complex procedure of computing the LLE
on the basis of a time series constructed from the numeridatisn for well-known nonlinear dynamical systems
(Lorenz, Rossler [9]) with a view to its subsequent appidafor the purpose of identification of deterministic chaos
in gait kinematic data for patients suffering from variousedises affecting way of walking.

METHOD OF THE TIME SERIESANALYSIS

Nonlinear time series analysis methods enable the detatiminof characteristic invariants such as the LLE of
a particular system solely by analyzing the time course & ohits variables [10]. Nevertheless, identification



of chaotic behavior based on experimental data is a mugestaocess. The first step constitutes a phase space
reconstruction. On the basis of Takens’ embedding theoderhthe phase space can be reconstructed using time-
delayed measurements of a single observed signal in forntimfeaseries. Reconstruction consists in viewing a time
seriesx = X(kts),k=1,...,N in a Euclidean spacd®™, wheremis the embedding dimension amglis the sampling
time [12]. Eachm-dimensional embedding vector is formedxas= [Xq, X+, Xk+2r5 - - - ,xk+(m,1)T]T, wherer is the
delay time. The selection af andm is important for the sake of reconstruction quality. It isrtkvhile to mention

that the properties associated with the system’s dynarmtsr @lia Lyapunov exponents) are preserved in the new
phase space.

Time delayt was calculated from the first local minimum of the mutual mfiation function (MI). Mutual
information betweer; andx;,; is @ measure of how much information can be predicted abaitiore series point
given full information about the other [1]. Assuming thaetrange of values in a time series was partitioned jnto
intervals of equal length, the mutual information functligm) can be computed according to the following formula:
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whereh andk are indices of intervald},, B, denote the probabilities that assumes a value within threth, k-th
interval, respectively, anBh «(T) is the joint probability thak belongs to thé-th interval andx ; is taken from the
k-th interval.

The minimalmthat is required to fully resolve the structure of the sysitethe reconstructed phase space was found
by the method of “False Nearest Neighbors” (FNN) [13], whikbased on the following assumption constituting the
condition of no self-intersections — if the attractor (aeset of states towards which neighboring states asymaligtic
approach in the course of dynamic evolution [14]) is to benstructed successfully iR™, then all points that are
close inR™ should also be sufficiently close ®™? [12]. A point which does not satisfy this condition is a “fals
neighbor. The number of such points is computed for incrgasmbedding dimension until the percentage of “false”
neighbors is below a given threshold.

The mean divergence between neighboring trajectorieseiptiase space at timés described by the following
formula:

)
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whereD is the initial separation between neighboring points ands the LLE [6]. The Rosenstein algorithm
[15] estimates the LLE locating nearest neighbors on adjairajectories and computing the divergence between
successive pairs along the trajectories. On the basis dbthaula (2) the Euclidean distanci(i) between the-th
pair of nearest neighbors aftetime steps of the length equal &b and the LLE are linked in the following way:

In[d;j(i)] = Ay (i - At) +In[Dj] (©)]

Hence, the LLE is estimated as the slope of the average thgsdd divergence of the neighboring trajectories:
. 1 .

(i) = 5 (Inldi ()]) (4)

where(-) denotes the average over all valueg of

NUMERICAL EXPERIMENTS

In the first stage of the research, for both the Lorenz and tisslBr systems a time series was constructed from the
numerical solution for the single state variable sampledfiy = 0 to tax = 100 at intervalgit = 0.01. Parameters
of the model (i.e. coefficients of the first-order system attestequations), initial conditions of the state variables,
parameters of the phase space reconstruction and computed/dlues (the “LLE (Rosenstein)” column) were
collected in Table 1. The results are consistent with LLEigalobtained by means of the Wolf algorithm [16] using
the Jacobian matrix constructed on the basis of state emqse(he “LLE (Wolf)” column).

The next stage of the research consisted in analysis of ggitenices which were recorded in the Human Motion
Laboratory (HML) of the Polish-Japanese Institute of Infiation Technology [17] by means of the Vicon Motion
Kinematics Acquisition and Analysis System. The Vicon eystis equipped with 10 NIR (Near InfraRed) cameras



TABLE 1. Description of the experiments with dynamical systems

System Model Initial Time Embedding LLE LLE
parameters conditions delay t  dimensionm (Rosenstein) (Wolf)
Lorenz 0=10p=283=8/3 Xo=1yp=2=0 17 3 0.7654 0.7164
Lorenz 0=16 p=4592 =4 x=1Yy9=2=0 11 3 1.4670 1.4118
Rossler a=b=02c=57 Xo=1Yy=2=0 128 3 0.0757 0.0749
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FIGURE 1. Stages of the LLE computation: a) analysed signals, b) mutual informajigercentage of false nearest neighbors,
d) reconstructed attractor, e) logarithmic divergence

recording the movement of an actor wearing a special sult aftached markers (theotion captureprocess).
Positions of the markers in consecutive time instants @omstbasis for reconstruction of their 3D coordinates. The
gait route was specified as a 5 meters long straight line (Laéreadmill is planned for future recordings).

The experiment described in the present abstract was aimedestigating chaotic behavior in tremor-affected
movements of both wrists of a patient suffering from Partiris disease (PD). A single analysed time series repre-
sented one of the following types of wrist movement at thetjaip and down -extension/flexiofExt/Fl), sidewards —
ulnar/radial deviation(Ul/Rad), and rotation pronation/supinatior{Pr/Sup) [18]. Fig. 1 illustrates results of succes-
sive stages of the LLE computation for the right wrist: a)lgsed signals, b) mutual information, c) percentage o&fals
nearest neighbors, d) reconstructed attractor, e) dimesgeSubfigures b)-e) were created for the case of ulnaalradi
deviation.

Table 2 includes the LLE values for all types of wrist moveirfen the patient suffering from PD as well as for a
healthy person.

In contrast to the results for the healthy person, all tydesrist movement for the patient suffering from PD are
characterized by the positive LLE values which indicateptfesence of deterministic chaos. The noticeable differenc
in the LLE values between both wrists of the PD patient corddroonclusions drawn from visual observation of him.
All computations were performed using MATLAB.

TABLE 2. The largest Lyapunov exponents for both examined persons

Type of Leftwrist Rightwrist Leftwrist Right wrist

movement  (PD) (PD) (Healthy)  (Healthy)
Ext/F 0.1233 1.0460 -1.0136 -0.1383
UllRad 0.0750 2.2593 -0.0782 -0.1645

Pr/Sup 0.1544 0.4440 -0.0856 -0.0743




CONCLUSION

The authors described an example of identification of thegiree of chaotic behavior in human motion data based on
phase space reconstruction and estimation of the LLE. Tpiéegjprocedure of a time series analysis will be extended
by incorporation of other measures, such as correlatioredéion and approximate entropy, in the hope that it will
constitute support for assessment of gait disorders (arathrags resulting from PD, stroke, osteoarthritis of thedrip
osteoarthritis of the spine).
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